skip to main content


Search for: All records

Creators/Authors contains: "Beichman, Charles A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The stellar companion to the weak-line T Tauri star DI Tau A was first discovered by the lunar occultation technique in 1989 and was subsequently confirmed by a speckle imaging observation in 1991. It has not been detected since, despite being targeted by five different studies that used a variety of methods and spanned more than 20 yr. Here, we report the serendipitous rediscovery of DI Tau B during our Young Exoplanets Spectroscopic Survey (YESS). Using radial velocity data from YESS spanning 17 yr, new adaptive optics observations from Keck II, and a variety of other data from the literature, we derive a preliminary orbital solution for the system that effectively explains the detection and (almost all of the) non-detection history of DI Tau B. We estimate the dynamical masses of both components, finding that the large mass difference (q∼ 0.17) and long orbital period (≳35 yr) make the DI Tau system a noteworthy and valuable addition to studies of stellar evolution and pre-main-sequence models. With a long orbital period and a small flux ratio (f2/f1) between DI Tau A and B, additional measurements are needed for a better comparison between these observational results and pre-main-sequence models. Finally, we report an average surface magnetic field strength (B¯) for DI Tau A, of ∼0.55 kG, which is unusually low in the context of young active stars.

     
    more » « less
  2. Abstract We present medium-resolution ( λ /Δ λ  = 2700), near-infrared spectral standards for field L0–L2, L4, and L7–Y0 dwarfs obtained with the Near-Infrared Echellette Spectrometer on the Keck II 10 m telescope. These standards allow for detailed spectral comparative analysis of cold brown dwarfs discovered through ongoing ground-based projects such as Backyard Worlds: Planet 9, and forthcoming space-based spectral surveys such as the James Webb Space Telescope, SPHEREx, Euclid, and the Nancy Grace Roman Space Telescope. 
    more » « less
  3. Abstract

    TESS has proven to be a powerful resource for finding planets, including those that orbit the most prevalent stars in our galaxy: M dwarfs. Identification of stellar companions (both bound and unbound) has become a standard component of the transiting planet confirmation process in order to assess the level of light-curve dilution and the possibility of the target being a false positive. Studies of stellar companions have also enabled investigations into stellar multiplicity in planet-hosting systems, which has wide-ranging implications for both exoplanet detection and characterization, as well as for the formation and evolution of planetary systems. Speckle and AO imaging are some of the most efficient and effective tools for revealing close-in stellar companions; we therefore present observations of 58 M-dwarf TOIs obtained using a suite of speckle imagers at the 3.5 m WIYN telescope, the 4.3 m Lowell Discovery Telescope, and the 8.1 m Gemini North and South telescopes. These observations, as well as near-infrared adaptive optics images obtained for a subset (14) of these TOIs, revealed only two close-in stellar companions. Upon surveying the literature, and cross-matching our sample with Gaia, SUPERWIDE, and the catalog from El-Badry et al., we reveal an additional 15 widely separated common proper motion companions. We also evaluate the potential for undetected close-in companions. Taking into consideration the sensitivity of the observations, our findings suggest that the orbital period distribution of stellar companions to planet-hosting M dwarfs is shifted to longer periods compared to the expected distribution for field M dwarfs.

     
    more » « less
  4. Abstract We report the analysis of microlensing event OGLE-2017-BLG-1038, observed by the Optical Gravitational Lensing Experiment, Korean Microlensing Telescope Network, and Spitzer telescopes. The event is caused by a giant source star in the Galactic Bulge passing over a large resonant binary-lens caustic. The availability of space-based data allows the full set of physical parameters to be calculated. However, there exists an eightfold degeneracy in the parallax measurement. The four best solutions correspond to very-low-mass binaries near ( M 1 = 170 − 50 + 40 M J and M 2 = 110 − 30 + 20 M J ), or well below ( M 1 = 22.5 − 0.4 + 0.7 M J and M 2 = 13.3 − 0.3 + 0.4 M J ) the boundary between stars and brown dwarfs. A conventional analysis, with scaled uncertainties for Spitzer data, implies a very-low-mass brown-dwarf binary lens at a distance of 2 kpc. Compensating for systematic Spitzer errors using a Gaussian process model suggests that a higher mass M-dwarf binary at 6 kpc is equally likely. A Bayesian comparison based on a galactic model favors the larger-mass solutions. We demonstrate how this degeneracy can be resolved within the next 10 years through infrared adaptive-optics imaging with a 40 m class telescope. 
    more » « less
  5. ABSTRACT We report the discovery and analysis of a planet in the microlensing event OGLE-2018-BLG-0799. The planetary signal was observed by several ground-based telescopes, and the planet-host mass ratio is q = (2.65 ± 0.16) × 10−3. The ground-based observations yield a constraint on the angular Einstein radius θE, and the microlensing parallax vector $\boldsymbol{{\pi} }_{\rm E}$, is strongly constrained by the Spitzer data. However, the 2019 Spitzer baseline data reveal systematics in the Spitzer photometry, so there is ambiguity in the magnitude of the parallax. In our preferred interpretation, a full Bayesian analysis using a Galactic model indicates that the planetary system is composed of an $M_{\rm planet} = 0.26_{-0.11}^{+0.22}M_{\rm J}$ planet orbiting an $M_{\rm host} = 0.093_{-0.038}^{+0.082}~\mathrm{M}_{\odot }$, at a distance of $D_{\rm L} = 3.71_{-1.70}^{+3.24}$ kpc. An alternate interpretation of the data shifts the localization of the minima along the arc-shaped microlens parallax constraints. This, in turn, yields a more massive host with median mass of $0.13 {\, \mathrm{M}_{\odot }}$ at a distance of 6.3 kpc. This analysis demonstrates the robustness of the osculating circles formalism, but shows that further investigation is needed to assess how systematics affect the specific localization of the microlens parallax vector and, consequently, the inferred physical parameters. 
    more » « less
  6. Abstract OGLE-2016-BLG-1093 is a planetary microlensing event that is part of the statistical Spitzer microlens parallax sample. The precise measurement of the microlens parallax effect for this event, combined with the measurement of finite-source effects, leads to a direct measurement of the lens masses and system distance, M host =0.38–0.57 M ⊙ and m p = 0.59–0.87 M Jup , and the system is located at the Galactic bulge ( D L ∼ 8.1 kpc). Because this was a high-magnification event, we are also able to empirically show that the “cheap-space parallax” concept produces well-constrained (and consistent) results for ∣ π E ∣. This demonstrates that this concept can be extended to many two-body lenses. Finally, we briefly explore systematics in the Spitzer light curve in this event and show that their potential impact is strongly mitigated by the color constraint. 
    more » « less
  7. null (Ed.)
  8. Abstract

    We present the validation of a transiting low-density exoplanet orbiting the M2.5 dwarf TOI 620 discovered by the NASA Transiting Exoplanet Survey Satellite (TESS) mission. We utilize photometric data from both TESS and ground-based follow-up observations to validate the ephemerides of the 5.09 day transiting signal and vet false-positive scenarios. High-contrast imaging data are used to resolve the stellar host and exclude stellar companions at separations ≳0.″2. We obtain follow-up spectroscopy and corresponding precise radial velocities (RVs) with multiple precision radial velocity (PRV) spectrographs to confirm the planetary nature of the transiting exoplanet. We calculate a 5σupper limit ofMP< 7.1MandρP< 0.74 g cm−3, and we identify a nontransiting 17.7 day candidate. We also find evidence for a substellar (1–20MJ) companion with a projected separation ≲20 au from a combined analysis of Gaia, adaptive optics imaging, and RVs. With the discovery of this outer companion, we carry out a detailed exploration of the possibilities that TOI 620 b might instead be a circum-secondary planet or a pair of eclipsing binary stars orbiting the host in a hierarchical triple system. We find, under scrutiny, that we can exclude both of these scenarios from the multiwavelength transit photometry, thus validating TOI 620 b as a low-density exoplanet transiting the central star in this system. The low density of TOI 620 b makes it one of the most amenable exoplanets for atmospheric characterization, such as with the James Webb Space Telescope and Ariel, validated or confirmed by the TESS mission to date.

     
    more » « less